
LL(k) Grammars

See pages 110-115 of the text.

We need a bunch of terminology.

For any terminal string a we write

Firstk(a) is the prefix of a of length k (or all of a if its length is
less than k)

For any string g of terminal and non-terminal symbols and any

non-terminal symbol A, we say A =*> g if we can derive g from
A. In English we say A derives g.

For any non-terminal symbol
 Firstk(A) is the set of Firstk(a) of all terminal strings A derives.

Note that for recursive descent to work, if A ::= B1 | B2 is a

grammar rule we need Firstk(B1) disjoint from Firstk(B2).

For any two sets S1 and S2 of strings of terminal symbols
S1kS2 is the set of prefixes of length k of all of the strings you an
get by concatenating a string from S1 with a string from S2.

For any non-terminal symbol A, Followk(A) is the set of prefixes of
length k of all the terminal strings that could come after strings
generated from symbol A. To be precise

 Followk(A) = {FIrstk(x) | S=*> wAx any strings w and x}

We say a grammar is LL(k) if for every non-terminal symbol a and
every pair of rules A ::= a | b we have
 [Firstk(a) k Followk(A)] [Firstk(b) k Followk(A)] =
The idea is that by looking ahead k token we can decide if we
should use the rule A ::= a or the rule A::= b.

We will see algorithms for generating the Firstk and Followk sets.

For now, suppose we know how to generate these sets. If the
grammar is LL(k) we can build a table-driven parser for it.

Assume first that k=1. We build a table whose columns are
indexed by tokens and whose rows are indexed by the non-
terminal symbols of the grammar. The entries of the table are the
grammar rules:

1. If A ::=a is a grammar rule and a is in First(a), then
 Table[A, a] is the rule A ::= a.

2. If A ::= a is a rule, and First(a) contains the empty string,
and if b is in Follow(A), then Table[A, b] is the rule A ::= a.

3. If A ::= a is a rule, and First(a) contains the empty string,
and if EOF is in Follow(A), then Table[A, EOF] is the rule
A ::= a.

To use the table we maintain a stack that contains the current
sentential form (string of symbols derived from the Start symbol):

1. Begin by pushing the Start symbol on an empty stack.
2. If the current token is on top of the stack, pop the stack and

get the next token.
3. If there is a non-terminal symbol A on top of the stack and the

current token is a, and if there is a rule in Table[A, a], pop the
A off the stack and push on the right side of the rule from the
table.

4. In (3), if there is no rule in Table[A, a] issue an error.
5. The stack should be empty when you reach the EOF token.

Example. S ::= if (C) S fi | if (C) S else S fi | a
 C ::= b

We would need too many tokens to disambiguate the two if-rules,
so we "factor" the grammar into
 S ::= if (C) S S' | a
 S' ::= fi | else S fi
 C ::= b
This is actually 5 rules:

(P1) S ::= if (C) S S' First(if (C) S S') = { if }
(P2) S ::= a First(a) = { a }
(P3) S ' ::= fi First(fi) = { fi }
(P4) S' ::= else S fi First(else S fi) = { else }
(P5) C ::= b First(b) = { b }

This gives the following parse table:

 if () fi else a b EOF

S P1 P2

S' P3 P4

C P5

It is easy to walk through parsing an expression like
 if (b)
 if (b)
 a
 else
 a
 fi
 fi

Note that if we had the more familiar grammar
 S ::= if (C) S | if (C) S else S | a

 C ::= b

We would factor it into

(P1) S ::= if (C) S S' First(if (C) S S') = { if }
(P2) S ::= a First(a) = { a }
(P3) S ' ::= else S First(else S) = { else }
(P4) S' ::= e First(e) Follow(S')= { else, EOF }
(P5) C ::= b First(b) = { b }

There is an ambiguity between P3 and P4 on the token else.

This time the table is

if () else a b EOF

S P1 P2

S' P3/P4 P4

C P5

We can effectively "disambiguate" the language by choosing
which rule we use for Table[S', else]. The standard choice is to
use P3, which puts a nested else with the nearest possible if.

We can build parse trees with this parser. Each time we pop a non-
terminal string off the stack, we replace it by a tree node pointing
at the right-side elements that are on the stack.

We have built the parse table for an LL(1) grammar. An LL(k) table
is exactly the same, only the columns are indexed by strings of k
tokens. The primary rule for building the table is:

If A ::= a is a grammar rule and w is in [Firstk(a) k Followk(A)] ,
then Table[A, w] is the rule A ::= a.

Left-recursive rules like E ::= E+T | T are not LL(k) for any k. Here is a way to eliminate
them. This is called "left factoring".

Example: Consider the grammar
 E ::= E + T | T
 T ::= T * F | F
 F ::= id

We factor it into
 E ::= T E'
 E' ::= + T E' | e

 T ::= F T'
 T' ::= * F T' | e

 F ::= id

This is completely unambiguous. Unfortunately, it makes right-associative trees, but we
can deal with that as we complete the tree.

Algorithm to find the First1 sets (you can generalize to Firstk)

Step I: First compute First(X) for every individual symbol X

1. If x is a terminal symbol, First(x) = {x}
2. For the non-terminal symbols X, start with First(X) empty

for every X. Apply the following rules until nothing
changes:
a) If X ::= e is a rule, add e to First(X).
b) If X ::= Y1Y2..Yn is a rule and e is in First(Y1).. First(Yj),

then add all the symbols of First(Yj+1) to First(X).
c) If X ::= Y1Y2..Yn is a rule and e is in every First(Yi), then

add e to First(X).

Step 2: Now find the First set for the right hand side of every rule:
 Suppose X ::= X1X2..Xn is a grammar rule

1. Start with First(X1X2..Xn) = First(X1)
2. Let i be the smallest index so e is not in First(Xi). Then all

of the symbols in First(Xj) for j <= i are in First(X1X2..Xn) .
3. If e is in all of the First(Xi) then it is also in First(X1X2..Xn).

Algorithm: To compute Follow(X) for every non-terminal symbol X:
1. Include EOF in Follow(Start).
2. If there is a rule X ::= aBb, include First(b)-e in Follow(B).

Now apply the following rules until nothing changes:

3. If X ::= aB is a grammar rule, then include all of Follow(X) in

Follow(B).
4. If X ::= aBb is a grammar rule and e is in First(b), then include

all of Follow(X) in Follow(B).

Example: Consider our calculator grammar:
 E ::= E+T | E-T | T
 T ::= T*F | T/F | F
 F ::= (E) | id

We left factor to get the following rules:
 (P1) E ::= TE' First(TE') = {id, EOF}
 (P2) E' ::= +TE' First(+TE') = {+}
 (P3) E' ::= -TE' First(-TE') = {-}
 (P4) E' ::= e Follow(E') = {), EOF}
 (P5) T ::= FT' First(FT') = {id, (}
 (P6) T' ::= *FT' First(*FT') = {*}
 (P7) T' ::= /FT' First(/FT') = {/}
 (P8) T' ::= e Follow(T')={+, -,), EOF}
 (P9) F ::= id First(id) = {id}
 (P10) F ::= (E) First((E)) = {(}

This gives the following LL(1) parse table:

 + - * / () id EOF

E P1 P1

E' P2 P3 P4 P4

T P5 P5

T' P8 P8 P6 P7 P8 P8

F P10 P9

The expression x-y*z +w*p gives the tree

E

T E'

F T'

x e

- T E'

F T'

y * F T'

z e

+ T E'

F T'

w * F T'

p e

e

To make this look like our other parse trees, apply the following
transformations:

1) Any treenode with only one child can be replaced by that child.
2) The tree can be replace by

E

T E'

op T E'

A

B C

E

op E'

T T

A B

C ==>

3) The tree can be replaced by

T

F T'

op F T'

A

B C

T

op T'

F F

A B

C ==>

With these transformations, our tree for x-y*z+w*p becomes

+

- *

X *

y z

w p

