
LL(k) Grammars 

See pages 110-115 of the text. 



We need a bunch of terminology. 
 
For any terminal string a we write 

Firstk(a) is the prefix of a of length k (or all of a if its length is 
less than k) 

 
For any string g of terminal and non-terminal symbols and any 

non-terminal symbol A, we say  A =*> g if we can derive g from 
A.  In English we say A derives g. 

 
For any non-terminal symbol 
  Firstk(A) is the set of Firstk( a) of all  terminal strings A derives. 
 
Note that for recursive descent to work, if A ::= B1 | B2 is a 

grammar rule we need Firstk(B1) disjoint from Firstk(B2). 
 



For any two sets S1 and S2 of strings of terminal symbols 
S1kS2 is the set of prefixes of length k of all of the strings you an 
get by concatenating a string from S1 with a string from S2. 
 
 
 



For any non-terminal symbol A, Followk(A) is the set of prefixes of 
length k of all the terminal strings that could come after strings 
generated from symbol A.  To be precise 
 
         Followk(A) = {FIrstk(x) | S=*> wAx  any strings w and x} 
 
 
We say a grammar is LL(k) if for every non-terminal symbol a and 
every pair of rules A ::= a | b we have 
        [Firstk(a) k Followk(A)]  [Firstk(b) k Followk(A)] =  
The idea is that by looking ahead k token we can decide if we 
should use the rule A ::= a or the rule A::= b. 
 
We will see algorithms for generating the Firstk and Followk sets. 



For now, suppose we know how to generate these sets.  If the 
grammar is LL(k) we can build a table-driven parser for it. 
 
Assume first that k=1.  We build a table whose columns are 
indexed by tokens and whose rows are indexed by the non-
terminal symbols of the grammar.  The entries of the table are the 
grammar rules: 
 

1. If A ::=a is a grammar rule and a is in First(a), then 
 Table[A, a] is the rule A ::= a. 

2. If A ::= a is a rule, and First(a) contains the empty string, 
and if b is in Follow(A), then Table[A, b] is the rule A ::= a. 

3. If A ::= a is a rule, and First(a) contains the empty string, 
and if EOF is in Follow(A), then Table[A, EOF] is the rule  
A ::= a. 
 



To use the table we maintain a stack that contains the current 
sentential form (string of symbols derived from the Start symbol): 

1. Begin by pushing the Start symbol on an empty stack. 
2. If the current token is on top of the stack, pop the stack and 

get the next token. 
3. If there is a non-terminal symbol A on top of the stack and the 

current token is a, and if there is a rule in Table[A, a], pop the 
A off the stack and push on the right side of the rule from the 
table. 

4. In (3), if there is no rule in Table[A, a] issue an error. 
5. The stack should be empty when you reach the EOF token. 



Example.  S ::= if (C) S fi | if (C) S else S fi | a 
                   C ::= b 
 
We would need too many tokens to disambiguate the two if-rules, 
so we "factor" the grammar into 
 S ::= if (C) S S' | a 
 S' ::= fi | else S fi 
 C ::= b 
This is actually 5 rules: 

(P1)  S ::= if (C) S S'  First( if (C) S S') = { if } 
(P2)  S ::= a   First( a ) = { a } 
(P3)  S ' ::= fi  First(fi) = { fi } 
(P4)  S' ::= else S fi  First(else S fi ) = { else } 
(P5)  C ::= b  First( b ) = { b } 



This gives the following parse table: 
 
 if ( ) fi else a b EOF 

S P1 P2 

S' P3 P4 

C P5 

It is easy to walk through parsing an expression like 
 if (b) 
        if (b) 
               a 
                     else  
  a 
        fi 
 fi 



Note that if we had the more familiar grammar 
 S ::= if (C) S | if (C) S else S | a 

             C ::= b 
 
We would factor it into 
 

(P1)  S ::= if (C) S S'  First( if (C) S S') = { if } 
(P2)  S ::= a   First( a ) = { a } 
(P3)  S ' ::= else S  First(else S) = { else } 
(P4)  S' ::= e  First(e )  Follow(S')= { else, EOF } 
(P5)  C ::= b  First( b ) = { b } 

 
There is an ambiguity between P3 and P4 on the token else. 



This time the table is 
 

if ( ) else a b EOF 

S P1 P2 

S' P3/P4 P4 

C P5 

We can effectively "disambiguate" the language by choosing 
which rule we use for Table[S', else].  The standard choice is to 
use P3, which puts a nested else with the nearest possible if.   



We can build parse trees with this parser.  Each time we pop a non-
terminal string off the stack, we replace it by a tree node pointing 
at the right-side elements that are on the stack. 
 
We have built the parse table for an LL(1) grammar.  An LL(k) table 
is exactly the same, only the columns are indexed by strings of k 
tokens.  The primary rule for building the table is: 
 
If A ::= a is a grammar rule and w is in [Firstk(a) k Followk(A)] , 
then Table[A, w] is the rule A ::= a.   
 
 



Left-recursive rules like E ::= E+T | T are not LL(k) for any k.  Here is a way to eliminate 
them.  This is called "left factoring". 
 
Example:  Consider the grammar 
 E ::= E + T | T 
 T ::= T * F | F 
 F ::= id 
 
We factor it into 
 E ::= T E' 
 E' ::= + T E' | e 

 T ::= F T'  
 T' ::= * F T' | e 

 F ::= id 
 
This is completely unambiguous.  Unfortunately, it makes right-associative trees, but we 
can deal with that as we complete the tree. 



Algorithm to find the First1 sets (you can generalize to Firstk) 
 
Step I: First compute First(X) for every individual symbol X 

1. If x is a terminal symbol, First(x) = {x} 
2. For the non-terminal symbols X, start with First(X)  empty 

for every X.  Apply the following rules until nothing 
changes: 
a) If X ::= e is a rule, add e to First(X). 
b) If X ::= Y1Y2..Yn is a rule and e is in First(Y1).. First(Yj), 

then add all the symbols of First(Yj+1) to First(X). 
c) If X ::= Y1Y2..Yn is a rule and e is in every First(Yi), then 

add e to First(X). 
 



Step 2: Now find the First set for the right hand side of every rule: 
 Suppose X ::= X1X2..Xn is a grammar rule 

1. Start with First(X1X2..Xn ) = First(X1) 
2. Let i be the smallest index so e is not in First(Xi).  Then all 

of the symbols in First(Xj) for j <= i are in First(X1X2..Xn ) . 
3. If e is in all of the First(Xi) then it is also in First(X1X2..Xn ). 



Algorithm: To compute Follow(X) for every non-terminal symbol X: 
1. Include EOF in Follow(Start). 
2. If there is a rule X ::= aBb, include First(b)-e in Follow(B). 

 
Now apply the following rules until nothing changes: 
 
3. If X ::= aB is a grammar rule, then include all of Follow(X) in 

Follow(B). 
4. If X ::= aBb is a grammar rule and e is in First(b), then include 

all of Follow(X) in Follow(B). 
 



Example: Consider our calculator grammar: 
 E ::= E+T | E-T | T 
 T ::= T*F | T/F | F 
 F ::= (E) | id 
 
We left factor to get the following rules: 
 (P1)  E ::= TE'    First(TE') = {id, EOF} 
 (P2)  E' ::= +TE'   First(+TE') = {+} 
 (P3)  E' ::= -TE'   First(-TE') = {-} 
 (P4)  E' ::= e      Follow(E') = {), EOF} 
 (P5)  T ::= FT'    First(FT') = {id, (} 
 (P6)  T' ::= *FT'   First(*FT') = {*} 
 (P7)  T' ::= /FT'    First(/FT') = {/} 
 (P8)  T' ::= e       Follow(T')={+, -, ), EOF} 
 (P9)  F ::= id     First(id) = {id} 
 (P10) F ::= (E)    First( (E) ) = {(} 



This gives the following LL(1) parse table: 
 
 
 + - * / ( ) id EOF 

E P1 P1 

E' P2 P3 P4 P4 

T P5 P5 

T' P8 P8 P6 P7 P8 P8 

F P10 P9 



The expression x-y*z +w*p gives the tree 

E 

T E' 

F T' 

x e 

- T E' 

F T' 

y * F T' 

z e 

+ T E' 

F T' 
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p e 

e 



To make this look like our other parse trees, apply the following 
transformations: 
 
1) Any treenode with only one child can be replaced by that child. 
2) The tree                                       can be replace by 
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op T E' 

A 
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E 
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T T 

A B 
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3) The tree                                             can be replaced by 

T 
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With these transformations, our tree for x-y*z+w*p becomes 

+ 

- * 

X * 

y z 

w p 


